Education Walsall

Schools Forum

Deprivation Working Party

26 January 2007
Present: Ted Gee
Austin Cheminais
Joe Baker
Stuart Holtam
Helen Masefield
Dawn Morris
Ben Clarke
Tim German
George McQueen
Apologies: Mr Davies
Heather Lomas
Jim Clarke

1. Introduction

All Local Authorities were advised in 2006 that they should present a statement to DfES, indicating how much of the funding delegated to schools was based on redressing the assessed cost of deprivation.

Authorities were advised that they should carry out a systematic review of local arrangements for deprivation funding, considering the extent to which arrangements deliver resources to schools to cover the cost of deprivation.

The Government's expectation is that resources should be devolved in a way that supports schools to close the gap in pupil outcomes. The work undertaken should be ready for use for the three-year funding round 2008-11.

Our Deprivation Statement showed that we receive approximately £21M on the basis of deprivation but (extracting SEN and PRUs from the equation) drive out only $£ 1.7 \mathrm{M}$ specifically to address the problems of deprivation. The sole indicator used to identify deprivation being entitlement to free school meals.

Walsall's statement had not included personalised learning or practical learning. It was acknowledged that the funding formulae for both of these elements took deprivation into account.

2. Deprivation in Walsall

Tim German gave a presentation on local needs and facilities mapping within the borough. There are clearly defined areas (mostly around the town centre and the M6 corridor) where deprivation is most obvious, with regard to income, unemployment, quality of housing et cetera. There are also some defined areas in the Brownhills area.

Discussion following the presentation covered the following topics:

- There was a congruence between low attainment and low income
- The mapping exercise consistently identified the same areas (with very marginal differences) as deprived, regardless of the research instruments used.
- Regeneration activities were concentrated in areas of greatest deprivation in Walsall
- Local needs analysis did not take note of families living outside the Walsall border and areas of substantial deprivation existed just outside the Walsall border

3. Measures of Deprivation

Helen Masefield and Ben Clarke presented a paper on the use of proxy and direct indicators of deprivation. The main points established through discussion were:

- Technology now exists to identify individual pupils, rather than simply geographical locations. In Walsall we should always aim to use pupil level data, rather than geographical data
- Indices were not scaled. Households either qualified for benefits or they did not: households $£ 1$ above the threshold would not count as deprived
- The most accurate predictor of pupil performance was prior attainment; this being so, Contextual Value Added measures should be taken into account when considering formula changes
- After prior attainment, research supported that the neighbourhood where the pupil lived was the next most powerful determinant.
- There was a positive correlation (sometimes a very strong correlation) between indicators. Care had to be taken not to 'double work' only to reach the conclusion that could more easily have been had from a readily available and transparent measure.

4. What is the cost of Deprivation?

The working groups noted that the Government's intention was to 'narrow the gap' in pupil outcomes, it was agreed that the 'gap' was
primarily an attainment gap but that it was reasonable to consider other 'gaps' like the 'digital divide' or gaps in experience.

Phase Specific Factors

Schools addressed the issues surrounding deprivation in many ways, with different strategies for different phases. These could include:

- Provision of play leaders in the early years, to help with social skills
- Lowering the pupil/teacher ratio
- Introducing learning mentors
- Providing direct financial assistance for school visits, items of uniform or kit, or IT hardware

There was strong support for the use of play leaders and learning mentors and it was agreed that future formula design could be based on aligning deprivation funding to schools' abilities to employ additional staff in these roles.

The group noted the additional emphasis on personalised learning and recognised that personalisation was a major initiative which could be used to countermand the effects of pupil deprivation. The groups recognised that personalisation could be assisted through additional adult time with pupils, as well as enhanced access to learning materials, learning platforms and ICT support.

SEN \& Behaviour

There was a general feeling that SEN was not related to deprivation, however it was noted that Government funding often linked deprivation and SEN. The working group reached the conclusion therefore, that it would be reasonable to take SEN funding into account when considering the spend on deprivation.

Behaviour was thought to be a less reliable measure, as it was concentrated on a numerically small number of pupils and was subject to volatility.

5. Next Steps

It was agreed that the next meeting would consider revised methods of measuring pupil deprivation, comparing and contrasting Free School Meal information with other measures.

Next Meeting: 20 ${ }^{\text {th }}$ Feb 2007 1.00pm Beverly Hotel

Notes on Deprivation in Walsall

Unless otherwise stated, all the data used comes from PLASC 2006 and SC 2006 matched to IDACI* 2004.

Contents

Page

2 IDACI
3 Interaction between IDACI and FSM
4 Combining the IDACI with FSM
6 Other Factors
8 Correlation between Other Factors and IDACI
12 Estimating the Number of Pupils coming from
a Deprived Background in Schools
15 References and Sources
$16 \quad \begin{aligned} & \text { Appendix } 1 \text { - Number of Pupils from Deprived } \\ & \text { Backgrounds by School }\end{aligned}$
18 Appendix 2 - Correlation between Measures

[^0]
IDACI

The majority of pupils attending Walsall schools come from areas that have an IDACI score which is higher than the national average of 0.14 , meaning that these areas are more deprived than average. 55% of pupils come from the 30% most deprived wards nationally and 69% come from the bottom 50%.

Assigning a percentile rank to each area according to their IDACI score helps to place the area within the national distribution. Here a percentile ranking of 0 would be the most deprived and one of 100 would be the least deprived, with 50 as being 'around average'.

Interaction between IDACI and FSM

At a school level, there is an 82% correlation between the number of pupils eligible for FSM and the total IDACI score* of the school.

[^1]

The percentage of those pupils eligible for FSM from the 30% most deprived SOA's nationally is 83%, which compares to only 48% of pupils not eligible for FSM.

Combining the IDACI with FSM

To calculate the number of pupils from low-income households using FSM and IDACI as indicators, it is important not to double count pupils who receive FSM and also come from deprived, high IDACI areas.

Using the IDACI to count the number of pupils included as coming from deprived backgrounds, the immediately obvious way is to choose a cut-off point - for example to say that those pupils who have an IDACI percentile of less than 30 or 50 (respectively incorporating pupils from the most 30% and
50% of most deprived wards nationally) come from a deprived background*. One problem with this is where exactly to set the cut-off point

The graph below charts the effect of setting the cut-off point at different IDACI levels. On the left hand side, the column is split into FSM and Non-FSM groups only. But as the threshold level increases, to include pupils whose IDACI percentile is in the range $0-10$, then $0-20$ progressing to $0-50$, more pupils are included as being deprived.

The problem with using a cut-off point is that pupils who come from areas with IDACI scores close to the margin are or are not included by the arbitrary positioning of the cut-off point. For example if a pupil comes from an area with an IDACI percentile rank of 32 , but the threshold is set at 30 , this pupil will not be included but may arguably still be described as coming from a deprived background.

This point about the problem of using a cut-off point also applies to FSM: if a pupil's family narrowly miss the criteria for them to be eligible for FSM, they cannot be included as coming from a deprived background, but still suffer the consequences of deprivation more than the majority of their peers. It is also important not to forget that all households entitled to FSM may not actually do so due to the perceived stigma associated to it.

[^2]
Other Factors

There are other factors which may influence a pupil's performance in school that are readily available for use. Most of the factors that PLASC/ SC provide are now used in the calculation of CVA. For example, pupils eligible for FSM or with higher IDACI scores are predicted to make less progress between Key Stages, as this is the national trend. Other contextual factors included in the model are:

- Gender
- SEN Status
- Ethnicity
- English as an Additional Language (EAL)
- In Care/ Looked After Children (LAC)
- Age - from Date of Birth (DOB)
- Mobility ${ }^{*}$ (Determined by date of joining school)

Prior attainment is also included, both at a pupil and school level. The spread of prior attainment is also considered.

On a school level, the DOB and Gender factors will generally even out and be roughly proportionate to the size of the school. The DOB factor is quite small, and the only schools with a significant imbalance between the genders are Queen Mary's High and Grammar (here there is an argument that the Grammar is not more deprived for being entirely male).

Note that not all of these factors decrement the predicted attainment of a pupil; for example an EAL pupil is expected to make more progress than a non-EAL pupil, and a pupil in Care is predicted to make less progress. Ethnicity is more variable, with some ethnic groups being expected to make more progress than normal and others expected to make less.

These factors can be summed up on an LA level, to investigate the extent to which each of these categories affects the predicted attainment. From KS2-4, it is clear that the negative factors (which decrease the predicted attainment) outweigh the positive factors, producing a negative net affect - i.e. pupils in Walsall are expected to make less progress than the national on average. The graph below summarises these effects. Note that this data is summed for all

[^3]pupils in years 7-11, not those in one particular year as used in the actual CVA calculation.

Note that Gender and IDACI scores have been normalised.
These positive and negative effects can be broken down into the various categories, to see how much each factor contributes towards the negative and positive factors:

This can also be displayed as a bar chart:

[^4]

From this it can be seen that the largest restricting factors on predicted attainment of Walsall pupils at KS4 are SEN, IDACI, Mobility and FSM. The picture at KS2-3 and KS3-4 is very similar.

Correlation between Other Factors and IDACI

About three-quarters of pupils in Walsall schools are White British. There is a correlation between income deprivation (FSM and IDACI) and Ethnicity, but that does not mean that every non-White is deprived. It might also be the case that if ethnicity is included as a factor of deprivation, then many pupils will be double counted. 18\% of White British pupils claim FSM compared to 21% of non-White British; the gap is wider in secondary schools where only 16% of White British and 23% of non-White British pupils are eligible for FSM. The average IDACI of non-White British pupils is 0.31 , compared to 0.26 for White British pupils.

Note that the groups with the highest average IDACI scores are Pakistani and Bangladeshi (both sizable groups) and the lowest are Chinese and Indian.

For the majority of ethnic groups* the IDACI of those pupils eligible for FSM was significantly below that of pupils not eligible for FSM. This further demonstrates the correlation between FSM and IDACI and the redundancy of Ethnicity as a factor of deprivation.

There is evidence to suggest that some minority ethnic groups are now outperforming White British pupils, as reflected in the CVA factors. This makes it harder to justify the inclusion of ethnicity as a factor of deprivation.

[^5]Similar graphs can be charted for the percentage of pupils eligible for FSM and the average IDACI by other pupil characteristics, as shown below. Not surprisingly the group with the highest IDACI are those eligible for FSM. Also, it should be little revelation that pupils in EAL, LAC, SEN and mobile* groups have a significantly higher than average IDACI and percentage of pupils eligible for FSM. There is little difference between the IDACI or percentage FSM for boys and girls, but for some reason pupils in primary schools seem to come from higher IDACI areas and claim more FSM than secondary schools - perhaps this reflects more pupils travelling across LA boarders to secondary schools.

[^6]Excluding age, gender and ethnicity, it is possible to categorise pupils into groups by their compound factors of deprivation. They can be grouped into the following groups:

- FSM: FSM / Non-FSM
- IDACI: High IDACI (0.14-1, i.e. 50% most deprived) / Low IDACI
- SEN: Any SEN / No SEN
- EAL: EAL / Non-EAL
- Mobility: Mobile (joined school not in July-September) / Not mobile

Pupils in care have been missed out of this list because they form a minute proportion of the overall population. However, it may be necessary to include them at a later point. It is then possible to place any pupil into one of each of these two groups for each factor - a total of 32 groups in total. The graph below shows the distribution of pupils in Walsall schools over these groups:

Estimating the Number of Pupils coming from a Deprived Background in Schools

Broadly speaking, there are two ways in which the deprivation of schools can be estimated:

1. How many pupils from a deprived background are there in the school?
2. How deprived are the backgrounds from which pupils in the school come?

The following is an attempt to address the first of these questions.
When trying to estimate the number of pupils coming from a deprived background, the first thing that may be said is that 'pupils who come receive Free School Meals come from a deprived background. Here it is worth noting that, in order to avoid double counting, it is necessary to further concentrate only on those pupils who do not receive FSM.

The IDACI is the other main measure that is readily available to measure deprivation. The DfES website states that:
[The IDACI] measures the proportion of children under the age of 16 in an area living in low income households.
(www.dfes.gov.uk, 15/02/07)
This means that, taking a given pupil from an area with a known IDACI, the probability of this pupil being from a low-income household is equal to the IDACI. For example a pupil coming from an SOA^{\dagger} with an IDACI of 0.25 would have a 0.25 chance (equivalent to 25% or $1 / 4$) of being from a low-income household. If eight pupils were from the same area, it would be expected that two of these pupils came from low-income households (that is 8 multiplied by 0.25).

Furthermore, it is possible to work out the probable number of pupils coming from low-income households by averaging out the pupils' IDACI scores. A simple example would be to take eight pupils from the area with an IDACI of 0.25 and four from an area with an IDACI of 0.50 . Here it would be expected that two pupils from the first area (8 times 0.25) and two from the second (4 times 0.50) would come from low-income households; that's a total of four pupils. The same result can be obtained by adding up the IDACI scores of the pupils:

[^7]\[

$$
\begin{aligned}
& 0.25+0.25+0.25+0.25+0.25+0.25+0.25+0.25 \\
& +0.50+0.50+0.50+0.50 \\
& \quad=4
\end{aligned}
$$
\]

The same result can be obtained by taking the average IDACI of the pupils (0.33) multiplied by the total number of pupils (12): $0.33 \times 12=4$. This technique will work for any group of pupils.

Hence on a school level, it is possible to calculate how many of the pupils who do not receive FSM are likely to come from low-income areas, by multiplying their number by their average IDACI. Adding this number on to the number of pupils receiving FSM at the school gives an estimate for the number of pupils in the school who come from deprived backgrounds.

Taking this at an LA level, there were 48451 pupils on PLASC/ SC 2006 in Walsall schools, 8981 of whom were eligible for FSM. Of the other 39470, the average IDACI score was 0.24 (to two decimal places), so the number of these who are likely to come from a low-income household is 39470×0.24, which is 9522.6 (to one decimal place). ${ }^{\dagger}$ In total this gives $8981+9522.6=$ 18503.6 pupils classified as coming from deprived backgrounds - either receiving FSM or coming from low-income households (or both).

As the table shows, this method would result in 39\% of pupils in Walsall schools being classified as coming from deprived backgrounds.

[^8]The formula for estimating the number of pupils from deprived backgrounds is therefore:
\(\left.$$
\begin{array}{cccc}\text { Number of } \\
\text { Pupils from } \\
\text { Deprived } \\
\text { Backgrounds }\end{array}
$$=\begin{array}{c}Number

of Pupils

Eligible

for FSM\end{array}+$$
\begin{array}{c}\text { Average }\end{array}
$$\right]\)| Number of |
| :---: |
| Pupils Not |
| Eligible for |
| FSM |\quad| IDACI Score |
| :---: |
| of Pupils Not |
| Eligible for |

For the calculated estimate of the number of pupils from a deprived background by school, please see Appendix 1.

This measurement of deprivation, of course, correlates closely with the two factors which generate it. The share of the estimated number of pupils from deprived backgrounds can be calculated for each school by dividing the estimated total number of such pupils in the LA; the share can similarly be calculated using FSM and the IDACI. The share by the estimated number of pupils from deprived backgrounds has a correlation of 91% with the share by FSM and a correlation of 98% with the share by total IDACI. Compare this to the 82% correlation between the share by FSM and the share by IDACI. If these shares are normalised, to neutralise the dominating affect of the larger schools on the correlation, the correlations increase to 94%, 99% and 88% respectively. See Appendix 2 for correlation graphs.

References and Sources

http://www.dfes.gov.uk/performancetables/schools 06/CVA-TechnicalAnnex.doc - 15/02/2007 13:45

Data from PLASC 2006 and SC 2006 matched to IDACI 2004 unless otherwise stated.

Appendix 1 - Number of Pupils from Deprived Backgrounds by School

Using the method described in the 'Estimating the Number of Pupils coming from a Deprived Background in Schools' section above.

DfES	School Name					\% of School	$\begin{gathered} \text { \% of LA } \\ \text { Total } \end{gathered}$		
4007	Joseph Leckie CTC	503	815	0.31	755.14	57\%	4.08\%	1	24
4105	Willenhall School Sports College	261	1283	0.28	614.59	40\%	3.32\%	2	70
4055	Shelfield	283	1013	0.29	575.35	44\%	3.11\%	3	56
5401	St Thomas More Catholic School	200	1216	0.31	572.94	40\%	3.10\%	4	66
4100	Darlaston Community Science College	279	840	0.33	556.86	50\%	3.01\%	5	48
4107	Sneyd Community School	261	1008	0.29	550.61	43\%	2.98\%	6	59
4017	Alumwell Business \& Enterprise College	326	569	0.37	536.89	60\%	2.90\%	7	18
4016	Frank F Harrison	245	596	0.41	487.56	58\%	2.63\%	8	22
4602	Blue Coat C.E. Comp.	172	892	0.31	444.08	42\%	2.40\%	9	63
4106	Pool Hayes Community School	180	951	0.24	404.58	36\%	2.19\%	10	81
5402	Shire Oak School	205	1115	0.18	403.25	31\%	2.18\%	11	87
4057	Brownhills Community	201	799	0.25	400.71	40\%	2.17\%	12	69
5405	Aldridge School - A Science College	80	1381	0.13	259.56	18\%	1.40\%	13	109
3805	Edgar Stammers Primary	161	205	0.47	258.31	71\%	1.40\%	14	4
4008	Rushall Community College	156	174	0.44	233.18	71\%	1.26\%	15	3
5400	The Streetly School	85	1295	0.11	232.23	17\%	1.26\%	16	113
2033	Bentley Drive	128	274	0.37	229.05	57\%	1.24\%	17	27
2236	Hatherton Primary School	105	265	0.44	220.99	60\%	1.19\%	18	19
5406	Barr Beacon Language College	56	1357	0.12	215.21	15\%	1.16\%	19	115
2246	Hillary Primary	111	304	0.31	206.67	50\%	1.12\%	20	47
2000	Alumwell Junior	124	225	0.35	203.66	58\%	1.10\%	21	21
3114	Birchills Church Of England	117	200	0.43	202.03	64\%	1.09\%	22	13
4606	St Francis Of Asissi Catholic Technology \(
)	55	983	0.15	200.30	19\%	1.08\%	23	103	
2241	Harden JMI	128	139	0.51	198.91	74\%	1.07\%	24	1
2104	Rough Hay Primary School	132	170	0.34	190.62	63\%	1.03\%	25	14
2101	Bentley West Primary School	93	348	0.28	188.93	43\%	1.02\%	26	60
2028	Palfrey Junior School	93	238	0.39	186.53	56\%	1.01\%	27	29
2103	Pinfold Street JMI School	110	235	0.32	185.70	54\%	1.00\%	28	34
2035	Beechdale Primary School	125	145	0.41	185.07	69\%	1.00\%	29	7
3329	Barcroft Primary	98	274	0.29	178.41	48\%	0.96\%	30	51
2250	Chuckery Primary School	80	367	0.26	175.46	39\%	0.95\%	31	71
2030	Palfrey Infant	64	285	0.39	174.45	50\%	0.94\%	32	45
2031	Whitehall Junior Community Sch	110	159	0.34	164.64	61\%	0.89\%	33	16
3100	Old Church CE	68	295	0.31	159.54	44\%	0.86\%	34	57
3001	Bloxwich C Of E JMI	87	222	0.33	159.29	52\%	0.86\%	35	43
2018	Green Rock Primary	97	130	0.48	159.16	70\%	0.86\%	36	5
2032	Whitehall Infant School	81	208	0.36	156.31	54\%	0.84\%	37	32
2106	Kings Hill Primary School	77	236	0.33	156.05	50\%	0.84\%	38	46
3300	Blue Coat Ce (A) Junior School	74	246	0.31	151.25	47\%	0.82\%	39	55
2001	Alumwell Infant	85	180	0.37	150.71	57\%	0.81\%	40	28
2123	Caldmore Community Primary School	80	171	0.40	148.18	59\%	0.80\%	41	20
3000	Christ Church C E	86	149	0.41	147.16	63\%	0.80\%	42	15
2002	Blakenall Heath Junior School	105	95	0.43	145.45	73\%	0.79\%	43	2
2043	Delves Junior School	66	291	0.27	145.18	41\%	0.78\%	44	64
2244	North Walsall Primary	78	139	0.47	143.34	66\%	0.77\%	45	9
2016	Elmore Green Primary School	68	233	0.32	142.64	47\%	0.77\%	46	53
2247	Beacon Primary	86	214	0.26	141.83	47\%	0.77\%	47	54
3301	Blue Coat Ce (A) Infant School	63	235	0.33	141.50	47\%	0.76\%	48	52
2004	Busill Jones Primary School	76	194	0.32	138.12	51\%	0.75\%	49	44
2243	Mossley Primary	74	191	0.33	137.89	52\%	0.75\%	50	41
2012	Delves Infant and Nursery	51	297	0.29	136.03	39\%	0.74\%	51	72
2006	Butts JMI	76	175	0.34	135.76	54\%	0.73\%	52	31
2105	Salisbury Primary School	76	172	0.32	130.50	53\%	0.71\%	53	39
3312	St Thomas Of Canterbury School	65	148	0.44	130.19	61\%	0.70\%	54	17
3304	St Patricks RC	62	183	0.37	128.81	53\%	0.70\%	55	40
2024	Leamore Primary	58	184	0.38	128.41	53\%	0.69\%	56	37
5203	Pheasey Park Farm Primary	50	667	0.12	127.01	18\%	0.69\%	57	110
5403	Queen Mary's High School	20	683	0.15	125.65	18\%	0.68\%	58	108
3327	Moorcroft Wood Primary	61	194	0.33	125.36	49\%	0.68\%	59	49
2118	Woodlands Primary School	52	353	0.21	124.40	31\%	0.67\%	60	86
2047	Croft Community Primary School	73	107	0.46	122.48	68\%	0.66\%	61	8
2113	Little London JMI	64	166	0.35	121.66	53\%	0.66\%	62	38

DfES	School Name		$\begin{gathered} \text { Number of Non-FSM } \\ \text { Pupils } \end{gathered}$			\% of School	$\begin{gathered} \text { \% of LA } \\ \text { Total } \end{gathered}$		
2248	St James Primary	79	129	0.31	119.04	57\%	0.64\%	63	25
5404	Queen Mary's Grammar School	20	654	0.15	116.11	17\%	0.63\%	64	111
2220	Millfield Primary	75	134	0.28	112.65	54\%	0.61\%	65	33
3102	St Giles C E Primary School	38	265	0.28	111.64	37\%	0.60\%	66	78
2237	Pelsall Village School	59	229	0.23	110.98	39\%	0.60\%	67	73
2003	Sunshine Infant \& Nursery	72	85	0.43	108.75	69\%	0.59\%	68	6
2239	Greenfield Primary School	62	231	0.20	108.19	37\%	0.58\%	69	77
2238	Lodge Farm JMI	52	237	0.24	107.86	37\%	0.58\%	70	75
2245	Leighswood School	38	520	0.13	106.05	19\%	0.57\%	71	105
2218	Walsall Wood J.M.I. School	68	135	0.23	98.74	49\%	0.53\%	72	50
2102	King Charles Primary School	56	115	0.34	94.71	55\%	0.51\%	73	30
3111	St John's C.E. Primary School	32	330	0.19	94.67	26\%	0.51\%	74	94
2231	Lakeside JMI	59	105	0.34	94.28	57\%	0.51\%	75	23
3310	St Joseph's Catholic Primary School	32	197	0.30	92.08	40\%	0.50\%	76	68
2041	Abbey Primary School	50	124	0.32	90.28	52\%	0.49\%	77	42
2228	The Radleys Primary School	38	192	0.26	87.31	38\%	0.47\%	78	74
2205	Rushall Junior Mixed and Infant School	45	193	0.22	86.80	36\%	0.47\%	79	80
2111	Clothier Street Primary School	45	108	0.34	81.97	54\%	0.44\%	80	36
2042	Lower Farm	20	411	0.15	80.75	19\%	0.44\%	81	107
2122	New Invention Junior	33	322	0.15	80.55	23\%	0.44\%	82	99
3003	Little Bloxwich C Of E VC	40	160	0.25	80.44	40\%	0.43\%	83	67
2117	County Bridge Primary School	34	170	0.25	75.68	37\%	0.41\%	84	76
2240	Meadow View JMI School	26	291	0.17	74.78	24\%	0.40\%	85	97
2114	New Invention Infant School	23	325	0.16	74.56	21\%	0.40\%	86	101
2249	Cooper - Jordan Primary School	23	468	0.11	73.94	15\%	0.40\%	87	116
2225	Brownhills West Primary School	38	136	0.24	70.56	41\%	0.38\%	88	65
3306	St Peter's Catholic Primary	15	220	0.25	69.90	30\%	0.38\%	89	89
2222	Castlefort J.M.I. School	32	185	0.18	65.85	30\%	0.36\%	90	88
7004	Jane Lane School	46	75	0.25	64.86	54\%	0.35\%	91	35
2224	Ryders Hayes Community School	18	427	0.11	63.64	14\%	0.34\%	92	117
2116	Short Heath Junior School	23	210	0.19	62.24	27\%	0.34\%	93	93
2219	Watling Street Primary	27	181	0.18	58.84	28\%	0.32\%	94	91
3110	St Michaels CofE(C) Primary School	10	350	0.14	58.49	16\%	0.32\%	95	114
7002	Castle School	39	46	0.33	54.19	64\%	0.29\%	96	12
3322	St Francis Catholic Primary	14	205	0.19	53.44	24\%	0.29\%	97	96
3325	St Bernadette's R.C. Primary	12	181	0.20	48.19	25\%	0.26\%	98	95
7007	Old Hall School	31	52	0.31	47.36	57\%	0.26\%	99	26
3101	Rosedale CE Infant	18	155	0.19	47.08	27\%	0.25\%	100	92
5201	Park Hall Junior School	5	403	0.10	45.47	11\%	0.25\%	101	120
3010	Holy Trinity C Of E Primary	17	220	0.13	44.96	19\%	0.24\%	102	106
3302	St Mary's The Mount Catholic	6	229	0.17	44.89	19\%	0.24\%	103	104
1008	Alumwell Nursery		120	0.37	44.07	37\%	0.24\%	104	79
2119	Pool Hayes Primary	13	170	0.16	40.87	22\%	0.22\%	105	100
3323	St Mary Of The Angels JMI	12	224	0.13	40.36	17\%	0.22\%	106	112
2235	Lindens Primary School	12	322	0.09	40.25	12\%	0.22\%	107	118
1005	Valley Nursery		87	0.44	37.90	44\%	0.20\%	108	58
5200	Park Hall Infant School	5	317	0.10	36.43	11\%	0.20\%	109	119
7006	Daw End	26	28	0.32	34.84	65\%	0.19\%	110	10
2234	Blackwood School	5	558	0.05	32.66	6\%	0.18\%	111	123
1000	Sandbank Nursery School		96	0.33	31.37	33\%	0.17\%	112	84
1001	Fullbrook Nursery		80	0.35	27.78	35\%	0.15\%	113	83
7011	Oakwood School	19	41	0.16	25.54	43\%	0.14\%	114	61
2214	Whetstone Field Primary School	6	235	0.08	25.04	10\%	0.14\%	115	121
1006	Millfields Nursery		102	0.24	23.99	24\%	0.13\%	116	98
7005	Mary Elliot School	10	51	0.23	21.67	36\%	0.12\%	117	82
1004	Rowley View Nursery		67	0.32	21.50	32\%	0.12\%	118	85
1007	Lane Head Nursery School		96	0.21	20.24	21\%	0.11\%	119	102
2232	Redhouse Primary	10	30	0.23	16.80	42\%	0.09\%	120	62
3324	St Anne's R.C. J.M.I.	1	226	0.06	13.99	6\%	0.08\%	121	122
5202	Manor Primary School		291	0.04	12.47	4\%	0.07\%	122	124
1009	Ogley Hay Nursery		40	0.29	11.53	29\%	0.06\%	123	90
7003	Three Crowns Community Special	6	6	0.29	7.72	64\%	0.04\%	124	11
	Walsall LA	8981	39470	0.24	18503.61	38\%	100.00\%		

Appendix 2 - Correlation between Measures

IDACI against FSM

IDACI against estimated number of pupils from deprived backgrounds

FSM against estimated number of pupils from deprived backgrounds

Normalised share - these figures have been normalised by the size of the school in order to neutralise the dominant affect of larger schools on the correlation:

IDACI against FSM

IDACI against estimated number of pupils from deprived backgrounds

FSM against estimated number of pupils from deprived backgrounds

[^0]: * Income Deprivation Affecting Children Index - produced by the ODPM

[^1]: *The total IDACI score is equivalent to the average IDACI score weighted by the number of pupils in the cohort.

[^2]: * It does not matter whether the IDACI percentile rank or IDACI score is used. For example taking pupils with an IDACI percentile of less than 50 is equivalent to taking pupils whose IDACI score exceeds 0.14.

[^3]: * Mobility is defined in two ways in the CVA model: firstly by whether or not they joined in the middle of an academic year (i.e. not in July-September); secondly by whether or not they joined the school in the last couple of years before a key stage (the exact number of years varies between Key Stages).

[^4]: *This means that IDACI scores contribute negatively to the predicted attainment by the amount that they exceed the average (0.14) - and positively if they are lower than that. Normalisation also assures that instead of each girl contributing 14.57 (and each boy contributing zero), girls contribute +7.285 and boys contribute -7.285 .

[^5]: * In fact all ethnic groups apart from 'Chinese', 'White and Black African' and 'Other'.

[^6]: *As defined by those not joining July-September.

[^7]: * Low income households are those where the income is less than 60% of the national median.
 ${ }^{\dagger}$ Super-Output Area's (SOA's) are the geographical divisions for which the IDACI is produced.

[^8]: * In most cases, taking the average IDACI and multiplying by the number of pupils will be the same as summing the IDACI scores. However, there is a small number of pupils who have not been matched to their IDACI scores; for these pupils it seems reasonable to assume that their IDACI is equal to the average of the rest of the pupils in the school - thus the average of the IDACI multiplied by the pupil number may differ slightly from the summed IDACI scores.
 † It may seem absurd to use the term ' 9522.6 pupils', but since this is only an approximate number, it is reasonable to leave the numbers used in calculations unrounded.

